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In a fluid mixture near a critical point, there are long-range fluctuations in the component concentrations that
exceed the range of the intermolecular forces. If the components are linked by a chemical reaction, then the
fluctuations in the concentrations of the reactants and products have their origin in the fluctuation in the
extent of reaction,ê. The fluctuation inê about the position of chemical equilibrium can be expressed by the
statistical variance, var(êe), where the subscript “e” denotes equilibrium. We show that var(êe) is inversely
proportional to (∂∆G/∂ê)e, where∆G is the Gibbs energy difference separating products from reactants. Because
the relaxation time,τ, that governs the rate of approach of the reaction to equilibrium is also inversely
proportional to (∂∆G/∂ê)e, τ is proportional to var(êe). This latter relation constitutes a fluctuation-dissipation
theorem. Under circumstances near a critical point where var(êe) f ∞, the theorem predicts that the specific
relaxation rate1/τ should go to zero and that the rate of approach of the reaction to chemical equilibrium
should slow.

I. Introduction

In a fluid mixture near a liquid-vapor or liquid-liquid critical
point, there are long-range fluctuations in composition that do
not occur elsewhere in the phase diagram.1 When the temper-
ature,T, is close enough to the critical temperature,TC, the
spatial extent of these fluctuations exceeds the range of the
intermolecular forces. In this situation, the macroscopic proper-
ties of the fluid are dominated by the fluctuations and become
largely independent of the intermolecular forces. This phenom-
enon is the basis for applying the principle of universality to
critical effects in fluid mixtures.2,3

In the case of a chemically reacting fluid, the fluctuations in
the concentrations of the reactants and products have their origin
in the fluctuations in the extent of reaction. We will show that
the variance of the statistical distribution of the extent of
reaction,ê, about its equilibrium value,êe is inversely propor-
tional to the thermodynamic derivative, (∂∆G/∂ê)e, where∆G
is the Gibbs energy difference separating products from reactants
and the subscript on the derivative indicates that it has been
evaluated atê ) êe. Because the specific rate,1/τ, of relaxation
of the reactant and product concentrations toward equilibrium
is proportional to (∂∆G/∂ê)e, the value of τ is ultimately
determined by the extent of the fluctuations about equilibrium.
This connection constitutes a fluctuation-dissipation theorem,
which should find application in the case of chemically reacting
mixtures near a critical point, where such fluctuations are
extreme.

II. Theory

We consider a reaction that converts reactants 1 and 2 to
products 3 and 4:

where theνj’s (j ) 1-4) are stoichiometric coefficients. The
molar concentrations,cj, of the reactants and products are linked

to the extent of reaction by the equation

where thecj(0)’s are the initial concentrations. The plus sign in
eq 2 applies to products, and the minus sign applies to reactants.

We letQ(T, V, {cj}) be the canonical partition function, where
T is the absolute temperature andV is the volume of the fluid.
The set of molar concentration variables{cj} includes all
components, both reactive and inert. If we letµj be the chemical
potential per mole of thejth component, then following Ben-
Naim4 the grand canonical partition function¥(T, V, {µj}) is
given by the sum

whereâ ) (kBT)-1 andkB is Boltzmann’s constant. The variance
in the concentration of thejth component is defined by

The nth moment of the statistical distribution of the values of
cj is computed from the grand partition function using

Settingn ) 1 in eq 5 and differentiating eq 3 with respect to
µj, we obtain

Settingn ) 2, we obtain
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Introducing the identity4

into eq 7, we can substitute eq 7 plus eq 6 into eq 4 to obtain

Taking note again of eq 6, eq 9 becomes

If j refers to one of the species involved in the reaction, then
the thermodynamic fluctuations in the value ofcj are determined
by the fluctuations inê. Substituting eq 2 into eq 4, we obtain

Using

var(cj) in eq 10 can be expressed as

The Gibbs energy difference separating products from reactants
is given by

We note that the chemical potential of a reactant or product is
necessarily a function of〈ê〉, so that the differentiation of eq
14 leads to

By introducing eq 13, eq 15 becomes

The sum on the right side of eq 16 can be computed using eq
11. Evaluating the result at chemical equilibrium and noting
that in the thermodynamicsê has the sense of〈ê〉 in statistical
mechanics, eq 16 can be expressed as

whereêe is the equilibrium value ofê.
Sufficiently close to equilibrium, the time dependence, dê/

dt, of the extent of reaction is determined by the equation

where1/τ is the specific rate of relaxation, which is given by5

In eq 19,R is the gas law constant, andr′(êe) is the rate of the
forward reaction at equilibrium.5 Equation 19 follows directly
from the Guldberg-Waage law of mass action,6 but it can also
be derived on the basis of the linear response theory.7

The next step is to substitute eq 17 into eq 19. We obtain

Equation 20 is our fluctuation-dissipation theorem.

III. Discussion and Conclusions

The use of the grand canonical ensemble to compute
concentration fluctuations has its origin in the Kirkwood-Buff
theory of solutions.8 This method has recently been applied to
the analysis of solute-solvent9,10and solute-solute11 molecular
clustering in supercritical fluids. The factor of 4 in eq 20 is
identical to the number of species involved in eq 1 and will be
different for reactions involving differing numbers of species.

To analyze the behavior of var(êe) asT f TC in the case of
a chemically reacting liquid mixture near its consolute point,12-14

we focus on eq 17. If var(êe) is to diverge asT f TC, then
(∂∆G/∂ê)e must approach zero. In a homogeneous reacting liquid
mixture, this is predicted to occur if the fixed thermodynamic
variables are restricted to the temperatureT, the pressureP,
and no more than one of the concentrations{cj} of the species
making up the mixture.15 Thus, if there is no more than one
chemically inert component in the mixture, we can expect (∂∆G/
∂ê)ef 0 and var(êe) f ∞ asT f TC. By virtue of eq 20, we
can also expect1/τ f 0 under these circumstances. This has
been observed experimentally in the case of SN1 hydrolysis12-14

reactions, at least whereT approachesTC from above.16

Acknowledgment. This research was sponsored by the U.S.
Army Strategic Missile Defense Command. Y.W.K. thanks the
Alabama NASA EPSCOR program for support, and J.K.B.
thanks the faculty of the Chemistry Department of Yale
University for their hospitality during 1998-1999 when this
research was begun.

References and Notes

(1) Munster, A. Critical Fluctuations. InFluctuation Phenomena in
Solids; Burgess, R. E., Ed.; Academic Press: New York, 1965; pp 179-
266.

(2) Greer, S. C.; Moldover, M. R.Annu. ReV. Phys. Chem.1981, 32,
233.

(3) Sengers, J. V.; Levett-Sengers, J. M. H.Annu. ReV. Phys. Chem.
1986, 37, 189.

(4) Ben-Naim, A.Water and Aqueous Solutions; Plenum Press: New
York, 1974; pp 137-139.

(5) Baird, J. K.J. Chem. Educ.1999, 76, 1146.
(6) Haase, R.Z. Phys. Chem. (N. F.) 1987, 153, 217.
(7) Velasco, R. M.; Garcia-Colin, L. S.Physica1974, 72, 233.
(8) Kirkwood, J. G.; Buff, F. P.J. Chem. Phys. 1951, 19, 774.
(9) Debeneditti, P. G.Chem. Eng. 1987, 42, 2203.

(10) Petsche, I.; Debenedetti, P. G.J. Phys. Chem.1991, 95, 386.
(11) Debenedetti, P. G.; Chialvo, A.J. Chem. Phys. 1992, 97, 504.
(12) Clunie, J. C.; Baird, J. K.Fluid Phase Equilib. 1998, 150-151,

549.
(13) Baird, J. K.; Clunie, J. C.J. Phys. Chem.1998, 102, 6498.
(14) Kim, Y. W.; Baird, J. K.Int. J. Thermophys. 2001, 22, 1449.
(15) Griffiths, R. B.; Wheeler, J. C.Phys. ReV. A 1970, 2, 1047.
(16) Kim, Y. W.; Baird, J. K.J. Phys. Chem. A,in press.

1
¥

∂
2¥

∂µj
2

) 1
¥

∂

∂µj
(¥∂ ln ¥

∂µj
) (8)

var(cj) ) 1

(âV)2(∂2 ln ¥
∂µj

2 ) (9)

var(cj) ) 1
âV(∂〈cj〉

∂µj
) (10)

var(cj) ) νj
2(〈ê2〉 - 〈ê〉2) ) νj

2 var(ê) (11)

dcj ) (νj dê (12)

var(cj) ) (
νj

âV(∂〈ê〉
∂µj

) (13)

∆G ) ν3µ3 + ν4µ4 - ν1µ1 - ν2µ2 (14)

∂∆G
∂〈ê〉

) ν3

∂µ3

∂〈ê〉
+ ν4

∂µ4

∂〈ê〉
- ν1

∂µ1

∂〈ê〉
- ν2

∂µ2

∂〈ê〉
(15)

∂∆G

∂〈ê〉
)

1

âV
∑
j)1

4 νj
2

var(cj)
(16)

(∂∆G
∂ê )e

)
(4/âV)

var(êe)
(17)

dê
dt

) - 1
τ
(ê - êe) (18)

1
τ

)
r′(êe)

RT (∂∆G
∂ê )e

(19)

1
τ

)
4r′(êe)

âVRTvar(êe)
(20)

10242 J. Phys. Chem. A, Vol. 107, No. 48, 2003 Baird and Kim


